Heltall, som er tall som kan ta hele tallverdier, er vanligvis representert i en datamaskin ved hjelp av en rekke metoder. Her er noen vanlige tilnærminger:
1. Tegn og størrelse:I denne representasjonen brukes den mest signifikante biten (MSB) av heltallet for å indikere tegnet på tallet. En 0 indikerer et positivt heltall, mens en 1 indikerer et negativt heltall. De gjenværende bitene representerer størrelsen, eller absoluttverdien, av tallet.
2. To-komplement:Dette er den vanligste metoden som brukes til å representere heltall i datamaskiner. I tos komplement brukes MSB fortsatt for å betegne tegnet, men i stedet for å bruke en separat bit for tegnet, utledes representasjonen av negative heltall ved å invertere alle biter av det positive heltall og legge til 1. Dette eliminerer behovet for en separat fortegnsbit og muliggjør effektive aritmetiske operasjoner.
3. Ens komplement:I likhet med tos komplement, inverterer ens komplement også alle biter for å representere negative heltall. Men i stedet for å legge til 1, bruker den ganske enkelt det inverterte bitmønsteret som representasjon for negative tall. Ens komplement er ikke så mye brukt i moderne databehandling som tos komplement på grunn av dets begrensninger i aritmetiske operasjoner.
4. Radikskomplement:Denne metoden representerer heltall ved bruk av en spesifikk radix (base) og bruker komplementoperasjonen deretter. For eksempel, i 10s komplement, oppnås komplementet til et tall ved å trekke hvert siffer i tallet fra 9 og legge til 1 til resultatet.
Valget av heltallsrepresentasjon avhenger av ulike faktorer, inkludert datamaskinarkitekturen, ønsket rekkevidde av tall som skal representeres, og effektiviteten til aritmetiske operasjoner. Twos komplement brukes ofte i moderne datamaskiner på grunn av fordelene i enkelhet og effektive aritmetiske operasjoner.