Archive for September 29, 2015

Hva skal vi med en matematiker i operasjonssalen?

Pasienten rulles inn og legges i narkose. Rundt operasjonsbordet står de grønnkledte. En av dem er verken kirurg, anestesisykepleier eller operasjonssykepleier.

Bak masken skjuler det seg en velpleiet bart og et skarpt sinn – en matematiker. Mathias Barra noterer hva som skjer i minste detalj.

På kontoret til Barra omformes notatene. Kyndig kirurgi kodes i programmeringsspråket R.

Operasjonen er analysert. Verktøyet kalles operasjonsanalyse. Innlysende? Ikke helt.

Mer enn summen av delene

– Operasjonsanalyse handler ikke spesielt om operasjoner på sykehus, forklarer Barra.

Det som opereres i operasjonanalyse, er ikke blindtarmer og bukspyttkjertler. Operasjonene gjøres på komplekse systemer med matematiske metoder.

– Målet er å finne svar på spørsmålet: Hvordan kan vi operere så mange som mulig på en tryggest mulig måte med et begrenset antall operasjonsrom og fagpersoner, sier Barra.

Og redskapet er operasjonsanalysen. Hvordan virker den i praksis? Komplekse systemer oppfører seg annerledes enn summen av delene. Barra gir et eksempel.

Død, dop og prostitusjon

– Når jagerfly opererer ett og ett alene, overlever kanskje hver tiende pilot. Hvis de flyr sammen, overlever flere. En slik flyformasjon er et komplekst system. Operasjonanalysen beskriver hvordan dette kan skje, forklarer Barra.

Eksempelet er ikke tilfeldig valgt. Operasjonsanalyse ble et selvstendig fag under Andre verdenskrig.

– Død, dop og prostitusjon er dessverre gode drivere av innovasjon, sier Barra sørgmodig.

Fra håndvask til siste sting

Etter krigen var militæret fortsatt storforbruker av operasjonsanalyse. Datalegenden Kristen Nygaard brukte blant annet metoden i Forsvaret forskningsinstitutt på slutten av 1950-tallet.

Nygaard deltok i utmarsjer for å oppleve soldatslitet på egen kropp. Operasjon Løvsprett ble operasjonsanalysert ned til minste gnagsår.

Barra har fulgt samme strategi. Han har vært med kirurgene og de andre fagfolkene fra håndvask til siste sting. Han har målt tida for hvert gjøremål. Kartlagt hvem som gjør hva – og når.

Beregner det uberegnelige

– Så forsøker jeg å bygge en matematisk modell og programmerer den inn i datamaskinen. Modellen setter opp spilleregler for hvordan handlingene i operasjonssalen utfolder seg, forteller Barra.

Modellene er ikke deterministiske. De er stokastiske. Det vil si at de introduserer tilfeldigheter.

Slik simulerer de en virkelighet som ofte er uberegnelig, slik som Kristen Nygaard på 1960-tallet utviklet programmeringsspråket Simula, sammen med programmeringsgeniet Ole Johan Dahl.

Mange små skritt

Ole Johan Dahls sønn Fredrik Dahl leder gruppen for operasjonsanalyse der Barra arbeider. Verden er liten. Men kompleks.

– Ideelt skulle vi gjerne gjort eksperimenter med modellen på flere alternative virkeligheter i operasjonssalen. Det kan vi ikke, sier Barra.

Operasjonsanalytikerne må nøye seg med å studere den virkeligheten som faktisk åpner seg under operasjonskniven.

– Så må vi tilpasse modellen slik at den samsvarer bedre og bedre med det vi faktisk ser. Det er en gradvis tilnærmingsprosess, sier Barra.

Hva om …

Når modellen er god nok, kommer neste skritt. Da kan modellen brukes til å simulere andre framgangsmåter.

Den kan svare på spørsmål av typen: Hva om vi ansetter en ekstra lege?

Eller: Hva om vi forskyver to operasjoner i tid, slik at en delt ressurs – anestesilegen – rekker å gå fra den ene operasjonen til den andre?

Et annet eksempel: Noen typer operasjoner varierer mye fra gang til gang. Andre er mer rutinepregede, like og forutsigbare.

– Vi kan legge operasjoner med liten variasjon i tidsbruk tettere i programmet, og spre de med store variasjoner. Slik forsøker vi å fordele usikkerheten, og det blir mindre sannsynlig at forsinkelser hoper seg opp, forklarer Barra.

Animerte datakirurger

Når han og kollegene skal foreslå endringer i framgangsmåter, trenger de å vise hva de mener for de som utfører operasjonene. Det nytter lite å komme ned til legene og sykepleierne med utskrifter av datakode.

– Vi bruker programmer som kan animere simuleringene. De ser nesten ut som dataspill, og viser en virtuell operasjonssal der animerte datafigurer beveger seg rundt, sier Barra.

Pasientflyt

Operasjoner er ikke det eneste Barra kan bruke verktøyene sine på. Forskergruppen for operasjonsanalyse har tidligere studert det som kalles pasientflyt.

– Hvordan fordeler du pasientene best mulig på delte ressurser som MR-skannere og senger? Hvordan hjelpe flest mulig slagpasienter gjennom behandling og rehabilitering?

Uten slike analyser ville det kanskje vært enda flere korridorpasienter enn i dag, sier Barra.

Flyt av skip

Simuleringene til Barra er som et moderne ekko av hvordan programmeringsspråket Simula først ble brukt på 1960-tallet.

Den gangen var det ikke pasientforløp gjennom sykehuset, men skipsanløp til en havn som ble simulert og effektivisert. Sykehuset er på sett og vis også en slags helsehavn.

– Tross omsorg og møter mellom mennesker er et sykehus også som en fabrikk. Det er som et stort, komplisert maskineri, sier Barra.

Mer helse for hver krone

Han er nøye med å understreke at han ikke ser på seg selv som en pengesparer.

– Hvor mye penger som bevilges til helse, er et politisk spørsmål. Det vi gjør, hjelper til med å få mest og best mulige tjenester ut av hver helsekrone, understreker han.

Medisinsk-matematisk revolusjon

Hvor vanlig er det å ansette matematikere på et sykehus? Ikke så uvanlig som man skulle tro, ifølge matematiker Jo Røislien, kjent fra NRK-programmet Siffer.

– De er bare litt mindre synlige. Oslo universitetssykehus har en egen biostatistikkavdeling der jeg selv jobbet for en stund siden, skriver han i en e-post til forskning.no.

– De ansatte er i hovedsak folk med matematiske utdannelser. Arbeidsoppgavene er å regne på alle deler av dette med kropp og helse, alt fra enkle statistiske analyser til tung matematisk modellering, forteller han.

– Den medisinske revolusjonen vi står midt oppe i er i hovedsak en matematisk revolusjon; medisin har de siste tiårene gått fra å være et fag nært humaniora til å bli et tungt statistikkdrevet fagfelt, skriver Røislien.

Tester ut inngrep med pasientens eget hjerte på skjermen

Ti prosent av dagens hjerte-kar-operasjoner mislykkes, og leger ønsker derfor tilgang til teknologi og verktøy som kan redusere denne risikoen.  Klinikere ved Haukeland Universitetssykehus, Rikshospitalet, St. Olavs Hospital og Universitetssykehuset i Nord-Norge jobber i disse dager tett med forskere fra SINTEF.

Forsker Sigrid Kaarstad Dahl og kollegene hennes gjenskaper nemlig pasientens hjerte på skjermen – bevegelig og pulserende – og simulerer den helt spesifikke blodstrømningen i hvert enkelt hjerte. Slik kan de forutsi effekten av et inngrep.  

– Dette betyr at vi kan teste ut operasjonen på forhånd og si noe om hvilke tiltak som gir best resultat for den enkelte pasient, sier overlege og kardiolog Stig Urheim som jobber ved Haukeland Universitetssykehus og Rikshospitalet.

Feil med hjerteklaff

Hjerte- og karsykdommer er per i dag den hyppigste dødsårsaken i vestlige land, og den lidelsen som koster samfunnet mest. Antall pasienter med hjerte- og karsykdommer er i tillegg ventet å øke betydelig i årene som kommer.

En av årsakene til at hjertet svikter, er klaffefeil. Dagens behandling går ut på enten å reparere klaffen eller å sette inn en kunstig ventil.

Ingen vet sikkert hvilke av de mange ulike teknikkene for å behandle en syk hjerteklaff som gir best resultat for den enkelte pasient. Siden mange av reparasjonene ikke lykkes og legene må operere på nytt, betyr dette flere innleggelser, økt medisinering, redusert livskvalitet og økt dødelighet for pasientene. For det offentlige vil det si økte utgifter og lengre ventelister.

Blodstrømmen varierer

Sigrid Kaarstad Dahl syntes denne problematikken var interessant og tok doktorgraden sin ved NTNU/Simula på simulering av blodstrømning i hjerte. Da hun startet i jobb ved SINTEF, forsatte hun på samme tema, med finansiering av instituttet. I dag samarbeider en stor gruppe forskere, ingeniører og klinikere fra hele Norge på prosjektet.

En av disse er Stig Urheim. Han forteller at anatomien er spesifikk for hver enkel pasient.

– Vi ser via forskningen at blodstrømmen over klaffen mellom forkammer og hjertekammer varierer fra individ til individ, avhengig av hvor lungevenene tømmer seg i forkammeret. Når vi setter inn en kunstig klaff, kan dette ha betydning for utfallet av operasjonen, sier han.

Reservedel kan endre blodstrømmen

Med utgangspunkt i ultralyd- eller MR-bilder som er tatt av den enkelte pasient, gjenskaper forskerne derfor hvert enkelt pasienthjerte.

Med sitt eget pulserende hjerte som utgangspunkt på dataskjermen, viser Sigrid Kaarstad Dahl oss hva hun snakker om.

– Når vi får hjertet opp på skjermen, gir simuleringer en mulighet til å ta hensyn til pasientforskjeller når nye reservedeler skal settes inn.

Hun viser oss noen av simuleringene som illustrerer blodstrømningen gjennom hjertet.

– Hjerteklaffen blir sydd fast der den syke klaffen satt. Når den settes inn, kan du se hvordan strømningsmønsteret endrer seg, avhengig av hvordan den settes inn og anatomien i det spesielle hjertet.

Hun tar fram et skjermbilde med et tverrsnitt tatt rett over hjerteklaffen.

– Om jeg for eksempel endrer litt på venene som går inn i hjertekammeret og samtidig plasserer klaffen slik, sier forskeren mens hun tar tak i blodårene med markøren på skjermen. Hun flytter dem litt opp og ned i høyden, før hun fortsetter:

– Så vil du se at hastighetsprofilen over hjerteklaffen endrer seg, og det oppstår uheldige strømninger. Dette kan muligens forklare hvorfor noen pasienter får blodproppdannelse i hjerteventilen – en tilstand som er livstruende.

Detaljert plan for operasjon

Funn som dette har ført til at forskerne ser for seg et mer strukturert behandlingsløp der legene – i tillegg til den informasjon de i dag får fra ultralydundersøkelser, også kan få resultater fra 3D-simuleringer av blodstrømningen i hjertet før og etter et planlagt inngrep.

– Skal en klaff repareres, vil et simuleringsverktøy kunne gi nyttig informasjon til legene, sier Sigrid Kaarstad Dahl.

– Denne type informasjon har ikke vært tilgjengelig før, og den kan hindre uheldige strømningsmønstre som på sikt kan føre til nye sykdommer og skader.

Bevegelige vegger i Norge

SINTEF-forskeren forteller at strømningssimuleringer med ulike geometrier er et «hot» tema internasjonalt, og at flere miljø jobber med det samme som dem.  Fortsatt befinner alle seg på forskningsstadiet, men forskerne i Trondheim ligger langt framme.

– Mens noen internasjonale miljø jobber med «stivt hjerte» uten dynamikk i hjerteveggen, har vi et hjerte med bevegelige vegger. Og vi bruker ultralyd – mens mange bruker MR og CT som er mer tid- og kostnadskrevende. Vi er også heldige som har svært gode leger med i prosjektet som gjør at vi hele tiden sikrer klinisk relevans.

Nå jobbes det intenst med modeller av hjerter og klaffer i tett samarbeid med Stig Urheim og professor Bjørn Skallerud på NTNU. I disse dager etableres det også et forskningssamarbeid med Northwestern University i Chicago, som er blant de fremste klaffesentrene i USA.

– Vi har noen konkrete metoder som vi holder på med nå, forteller Dahl, – men programvaren må bli mer strømlinjeformet slik at det blir lettere å innarbeide metoden. Dette vil først skje i kliniske studier, deretter i klinisk praksis.