Archive for October 16, 2015

Fremtidig epilepsi-app skal varsle anfall

Mange har allerede sett potensialet for å bruke smartklokker til å overvåke – og forhåpentlig forbedre – folks helse og livsstil. Forskerne fra Johns Hopkins vil først bruke Apple Watch til å samle inn detaljerte opplysninger om hva som skjer når et epileptisk anfall inntreffer, skriver Washington Post.

– Appen EpiWatch skal benytte seg av sensorene i klokken til å samle inn opplysninger om hjerterytme, blodgjennomstrømningen armbevegelser og årvåkenhet i forbindelse med et anfall, sier nevrologiprofessor Gregory Krauss. Mens det er apparater som allerede kan måle disse ulike faktorene, er klokken en enkel måte å samle alle de aktuelle opplysningene fra en svært fordelaktig plassering på håndleddet.

Målet er at innsikten fra studien kan brukes til å utvikle en app som kjenner igjen anfall, automatisk varsler pårørende og hjelper epileptikeren med å håndtere epilepsien.

– Det er snakk om en ganske alvorlig tilstand, og mange ønsker seg et verktøy som dette, sier Krauss og nevner blant annet familier som vil ha det til barna.

Denne maskinen skal sørge for raskere kreftsvar

Mange har kjent på den lammende følelsen av frykt for kreft og uvisshet mens de har gått og ventet på svar på en vevsprøve. Ventetiden kan ta flere dager, og du får ikke alltid et klart svar.

En gruppe forskere er i ferd med å utvikle en teknologi som gjør det mulig å korte ned ventetiden fra uker til et par dager. Dette vil også legge grunnlaget for både en nøyaktigere diagnose og en mer effektiv behandling av blant annet kreft.

Forskerne jobber i en bedrift som produserer mikroskopiske plastkuler, såkalte ugelstadkuler (se faktaboks), en av de største kjemiske, norske oppfinnelsene i det forrige århundret. Ved hjelp av plastkulene og et nytt, amerikansk spesialinstrument, skal sykehusene selv kunne undersøke DNA fra vevsprøver i stedet for å sende dem til et dyrt spesiallaboratorium.

Legene og pasientene får ikke bare et raskt og presist svar. Legene får også et veldig godt grunnlag for å bestemme hva slags krefttype det er snakk om og å skreddersy behandlingen. Det er ikke bare kreft som kan undersøkes på denne måten. Legene kan også bruke instrumentet for å finne ut nøyaktig hva slags bakterier som forårsaker en betennelse eller en sykdom.

Skreddersydd behandling

– Vi tror at prisen på et slikt instrument kan presses ned i noen titusen dollar, sier prosjektleder og sjefforsker Geir Fonnum hos Life Technologies på Lillestrøm.

Og dermed har det blitt så rimelig at det blir tilgjengelig også for små sykehus og andre mindre organisasjoner med begrensede budsjetter.

Med det nye instrumentet kan et sykehus bearbeide DNA fra samme prøve hundrevis av ganger i løpet av et par timer. Når legene har mange resultater fra samme prøve, vil kreftcellenes DNA etter hvert skille seg ut som avvik fra det friske DNA-et. På den måten kan de i løpet av en dag eller to konstatere nøyaktig hva slags kreftvariant det er snakk om. Dermed får de grunnlag for å skreddersy behandlingen til pasientens tilstand.

– En så nøyaktig DNA-prøve av kreftcellene, eller i andre tilfeller bakterier og virus, er også et godt grunnlag for dem som utvikler medisiner og annen terapi mot kreft og andre sykdommer. Våre eiere, den internasjonale utstyrsprodusenten Thermo Fisher, samarbeider med flere slike produsenter, forteller Fonnum.

Hovedoppgaven til forskerne er å skreddersy plastkulene til dette formålet. Plastkulene passer som hånd i hanske til mikrobrikken i instrumentet. Denne brikken er utviklet og produsert av en amerikansk søsterbedrift, Ion Torrent.

Hundredel av et hårstrå

Forskningssjef Erlend Ragnhildstveit hos Life Technologies forteller at nest etter mikrobrikken i instrumentet, er ugelstadkulen den viktigste faktoren i prosessen. Disse plastkulene er i dette tilfellet ned mot en mikron i størrelse. Det er omtrent en hundredel av tykkelsen på et hårstrå. Da blir de så små at de oppfører seg nærmest som en væske.

Enkelt fortalt virker instrumentet og prosessen på denne måten: Vevsprøvene fra pasienten løses opp, og DNA-ets bestanddeler fester seg til hver enkelt plastkule. På mikrobrikken i instrumentet sitter det millioner av små fordypninger tett i tett, akkurat som lysfølsomme punkter på en bildesensor i et digitalkamera.

Kulene, med bestanddelene fra DNA-et, skal så passe nøyaktig ned i fordypningene. Hver enkelt fordypning er en kjemisk sensor som forteller hva slags bestanddeler av DNA-et som sitter festet på plastkulen. På samme måte som antallet bildepunkter på sensorbrikken i et digitalkamera avgjør detaljrikdommen og skarpheten på et bilde, vil millioner av fordypninger her gi en høy oppløsning på DNA-prøven.

Slik sekvenseres DNA-et: 

Øker antallet

Den amerikanske produsenten av instrumentet jobber kontinuerlig med å presse enda flere fordypninger inn på mikrobrikken, såkalte brønner. Dermed vil nøyaktigheten på målingene øke. Den første versjonen av instrumentet hadde rundt 1,5 millioner slike brønner. I versjonen som nå er på markedet, kan man variere antallet opptil 165 millioner.

– Målet på sikt er å presse teknologien til rundt 660 millioner brønner. Det er en foreløpig fysisk grense, sier Ragnhildstveit. Da blir de under en mikron i bredde og forholdet mellom overflaten i brønnene og volumet blir så lite at det nærmer seg en grense for akseptabel signalstøy.

Flere bruksområder

Geir Fonnum forteller at teknologien de er med på å utvikle vil ha langt bredere bruksområde enn kun som grunnlag for å diagnostisere sykdommer og legge grunnlaget for utviklingen av enda mer effektive medisiner.

– Vi ser for oss at for eksempel artsbestemmelse kan bli mye mer presis med en slik sekvensator. I det hele tatt, på alle områder der DNA-sekvensering benyttes som verktøy, vil dette instrumentet representere en stor forbedring i arbeidsmetodene, sier han.

Les mer om teknologien her

Slik kan mennesker og roboter samarbeide

Dagens industriroboter veier ofte flere tonn og plasseres innenfor nettingbur så de ikke skal støte sammen med omgivelsene. Det betyr at robotene ofte står fast og gjør samme jobb om og om igjen – helt adskilt fra det menneskene gjør.

Når du ikke trenger å være redd for at en robotarm skal krasje inn i en vegg eller slå ned et menneske, blir det også interessant å utvide bruken av den.

Sintef-forsker Marianne Bakken forteller om et nytt, hett forskningsfelt i Europa kalt «samarbeidende roboter». Dette handler blant annet om at lette robotarmer i stadig større grad kan integreres i eksisterende produksjonssystemer.

Stadig lettere roboter

– Robotene kommer ned i en vekt på noen kilo, de er tryggere å jobbe med og stopper på en forsiktig måte hvis de først kolliderer. Men slike robotarmer jobber i dag i blinde. De trenger å bli mer intelligente så de ikke kolliderer hele tiden, og det er her vi kan komme inn i bildet, sier Bakken.

Ved å koble en sensor til roboten får vi en trygg robot som ser. Og da kan kanskje roboter jobbe ved siden av menneskene – i stedet for å plasseres i bur.

Oppdaterer bevegelser ti ganger i sekundet

Det hele startet med et behov for raskere reaksjon i en robotarm. 

– Utgangspunktet vårt var å hjelpe roboten til å se omgivelsene sine, forteller Bakken. Dette ble til et 4-årig prosjekt, der forskerne blant annet tok i bruk en 3D-sensor som ble koblet til roboten.

– Denne sensoren oppfatter objekter i rommet. Den registrerer hvor objektene befinner seg i forhold til robotarmen, forklarer forskeren.

En robot er nemlig avhengig av å mates med databeregninger for å bestemme hvilke retninger den skal bevege seg i. I dette tilfellet produserer sensoren data som sendes til en pc. Her bearbeides dataene for så å sendes videre til robotarmen. Forskerne har klart å få disse beregningene til å gå fort.

– Vi har klart å få til en oppdatering av bevegelsene ti ganger i sekundet, forteller Bakken.

Tidligere måtte det mange flere sekunder til for å regne ut en ny bevegelse, og roboten hadde kanskje allerede rukket å kollidere med omgivelsene sine. Nå behøver ikke roboten å stoppe opp og tenke seg om før en ny bevegelse er klar.

– Ved å kombinerer rask sensorteknologi med smarte algoritmer, det vil si beregninger, får vi til en konstant, sømløs manøver, sier Bakken.

Veien videre

Forskningsmiljøet har fått mye oppmerksomhet fra omverdenen for videoene som viser hvordan roboten fungerer. Forskerne har fått et generelt system de ønsker å bruke i flere prosjekter framover, og akkurat nå jobbes det med å selge inn ideen til industrien.

– Det er også mulig å bevege sokkelen på roboten og forflytte den slik at den blir mer selvstendig. I framtiden kan vi se for oss roboter som kjører rundt på arbeidsplassen og utfører et arbeid uten å kollidere med folk eller gjenstander, sier Marianne Bakken.

Matte-app ga rask hjelp

Førsteklassinger og foreldre deltok i et forsøk i Chicago-området der de fikk utdelt nettbrett og et gratis mattespill.

Etter bare en gangs bruk i uka kom disse elevene opp på nivå med klassekamerater fra mer mattevante familier, ifølge studien fra The University of Chicago.

Overraskende nok ga ikke enda oftere bruk videre uttelling hos denne gruppen. Forskerne tolker dette som at forspranget som de mattevennlige familiene har, raskt kan tas igjen.

Snakker lite om matte hjemme

Programmet Bedtime Math er laget spesielt for å brukes av barn og foreldre sammen.

Mange foreldre i USA er enten likegyldige eller føler seg usikre og snakker derfor lite om matematikk, sier forskerne i en nyhetsmelding fra universitetet.

– Foreldre er viktige. Vi bygger ikke kunnskap alene. Vi må diskutere det vi har opplevd og erfart med andre, bekrefter Jean-Baptiste Huynh overfor forskning.no. Han er matematikklærer, og har vært med på å utvikle den norske matte-appen DragonBox.

– Foreldre burde spille en større rolle, og ikke bare med lekser. Men det er litt vanskelig for foreldre, for de har ikke alltid gode verktøy for å samtale med barna om det de lærer, sier Huyhn.

Må handle om matte spesielt

587 familier deltok i studien. Litt under tre fjerdedeler fikk utdelt matte-appen, mens resten fikk en tilsvarende lese-app uten matte fra samme app-produsent.

Matte-appen hadde lesestykker og spørsmål innen telling, geometri, aritmetikk, altså for eksempel addisjon, multiplikasjon eller divisjon og enkel sannsynlighetsregning.

Forskerne kunne følge med på hvor ofte foreldrene brukte appene sammen med barna. Alle barna gjennomgikk prøver før forsøkene startet og etterpå, for å se hvor stor forbedringen var.

De fant en sammenheng mellom bruk og forbedring, men bare for de som brukte matte-appen. Det viser at det ikke hjelper med allmenne diskusjoner om akademiske emner i familien. Det må handle om matte spesielt.

Snakk med førskolebarn om former og rom

Selv om mattetalent til en viss grad er arvelig, betyr også miljøet mye. Det gir uttelling at matte er et tema i dagligprat i familiene.

Det er viktig at foreldre snakker med 4-5-åringene sine om former og romlige egenskaper til ting og bruker ord som sirkel, høy, kant og hjørne, skriver forskerne i studien.

Stort marked for utdanningsapper

Flere egenskaper ved appen kan ha bidratt til den gode virkningen, ifølge forskerne. Den er enkel og uten distraherende elementer. Den er tilpasset læringsmålene i skolen. Og den er spesielt beregnet på å brukes av barn og foreldre sammen.

– Disse funnene er spesielt viktige, sett i sammenheng med markedet for utdanningsapper på mange milliarder dollar, skriver forskerne bak studien i tidsskriftet Science.

Referanse og lenke:

Pressemelding fra The University of Chicago

Talia Berkowitz m.fl.: Math at home adds up to achievement in school, Science, 9. oktober 2015, doi:10.1126/science.aac7427, sammendrag.

Bedtime Math, nettstedet til produsenten av matte-appen.

Hva om vi kunne se wifi-signalene rundt oss?

I dag er vi konstant omringet av sensordata, trådløse nettverk, GPS-signaler og andre usynlige teknologier.

– Det har skjedd mye med teknologi de siste ti årene. Det som tidligere var et tungt teknologidrevet ingeniørfelt, er i dag hverdagslig for de fleste av oss. Skal vi ta teknologidiskusjonen ut av den tekniske sfæren og over i noe alle kan ha et forhold til, må den fremstilles på nye måter, sier Einar Sneve Martinussen ved Arkitektur- og designhøgskolen i Oslo (AHO).

Martinussen er interaksjonsdesigner og avsluttet nylig doktorgradsarbeidet sitt, der han har sett nærmere på hvordan teknologien kobler mennesker sammen og blir en del av kulturen og hverdagslivet. 

– Men vi vet lite om hvordan det fungerer. Det er behov for et språk for å forstå digital teknologi, slik at vi får flere stemmer med i teknologidiskusjoner. I dag er det fortsatt overlatt til ekspertene, mener han.

Synliggjør wifi og GPS med lys

Målet med hans egen forskning er derfor å nå ut til folk flest.

Han har i samarbeid med andre designere ved AHO laget en filmserie som synliggjør radiofeltene i Wifi, GPS og elektroniske billettsystemer som brukes til betaling, reise og logistikk.

En av filmene visualiserer trådløse nettverk på Grünerløkka i Oslo ved hjelp av en sensor og en fire meter høy «lysstav» utstyrt med 80 pærer. Jo flere pærer som er tent, jo sterkere signal. Når staven fotograferes med lang lukkertid mens den dras gjennom byen, blir et tverrsnittt av trådløse nettverk synliggjort.

En annen film viser unøyaktighetene i GPS-systemet (Global Positioning System). Såkalte satelittlamper er plassert rundt omkring i byen og fotografert over tid, og skifter lysstyrke utfra hvor gode GPS-forholdene er. 

Ikke eksotisk

Filmene har vist seg svært populære, med flere millioner visninger i hele verden. I Martinussens forskning er denne kulturelle formidlingen en viktig del av prosessen. 

– Det viser at det er behov for å forstå mer om teknologien som omringer oss hver dag. Dette er ikke fremtidsteknologi eller eksotisk på noe måte, men helt vanlige ting. Filmene gjør at vi kan delta i det kulturelle rommet rundt teknologien, gjennom design. Vi ønsker å bidra til å gjøre teknologien allment tilgjengelig, sier Martinussen.

Referanse:

Einar Sneve Martinussen. Pockets and Cities. Investigating and revealing the networked city through interaction design. Arkitektur- og designhøgskolen i Oslo (AHO), doktorgradsavhandling, 5. oktober 2015. Sammendrag.

Jesus, Allah, Vishnu og Odin blir samlet i enorm database

Stammereligioner i Afrika. Buddhistiske tradisjoner i Japan, Korea og Sri Lanka. Kristne som er katolikker, pinsevenner eller protestanter.

Kunnskapen om religioner og religiøse grupper er overveldende. Derfor har forskere fra University of British Columbia i Canada satt i gang et prosjekt for å samle alle religioner i en enorm internettdatabase.

Det har blitt til et verdensomspennende prosjekt, som er støttet med 30 millioner dollar.

– Det er et enormt fremskritt. Når databasen er ferdig, kan forskere konstruere målrettede søk og spørsmål, hvor de kan trekke på hele religions- og kulturhistorien, sier professor Anders Klostergaard Petersen, som er koordinator for prosjektet. Til daglig er han professor i religionsvitenskap ved Aarhus Universitet.

Over 50 forskere fra hele verden legger inn informasjon om ulike religioner i databasen. De svarer på omkring 200 spørsmål om blant annet ritualer, tro på et liv etter døden, og hvem medlemmene av den religiøse gruppen er.

Livets store spørsmål

Prosjektet varer offisielt frem til 2018, men Petersen mener det kan komme til å ta 10 til 20 år å kartlegge all kunnskap om både Vishnu, Zevs, Allah og andre guder.

Han forklarer at forskere likevel kan bruke databasen før den er komplett:

– Vi håper å rekke å legge inn alle religioner, helt fra de første og fram til i dag, i løpet av et par år. Etter hvert kan vi drive mer og mer forskning ut fra databasen. Da vil det bli enklere å sammenligne religiøse grupper, sier Petersen.

Formålet med prosjektet er å besvare noen av de helt store spørsmålene om religion, kultur og samfunn. Hovedspørsmålet er om det er noen sammenheng mellom religion og hvor godt folk i et samfunn samarbeider.

Kollega: Nyttig som oppslagsverk

Nettopp disse spørsmålene har førsteamanuensis og religionsforsker Tim Jensen fra Syddansk Universitet bitt seg merke i. De kanadiske forskerne legger opp til en mer moderne religionsvitenskapelig tilnærming:

– Også folk flest kan få nytte av databasen: Det er mange som er interessert i religionens betydning for konflikt og sosialt samhold, og det er det som står i fokus her, sier Tim Jensen, som ikke er en del av prosjektet selv.

Han tror databasen kan bidra til å skape et overblikk over religioner som ikke er så kjent.

– Dette er, så vidt jeg vet, ikke gjort før. Det gir et overblikk basert på spesialistkunnskap, sier Jensen.

Ikke alt er relevant for alle

Anders Klostergaard Petersen mener en database åpner muligheter for å svare på religionshistoriske spørsmål.

Både han og Tim Jensen påpeker likevel at religionene vil beskrives på en forenklet måte:

– Vi er litt redde for at det blir litt standardisert, og vi insisterer på mer historisk nyansering. Jeg er skeptisk til en del av spørsmålene forskerne skal svare på. Spørreskjemaet legger opp til ja eller nei, selv om alle spørsmålene ikke er relevante for alle religioner, sier Petersen.

Ambisiøst prosjekt

Petersen mener likevel at prosjektet er viktig.

– Selvfølgelig er det også et element av storhetsvanvidd, men vi får se ha det blir mulig å få til. Vi må kunne tenke stort, sier han.

I videoen kan du se den offisielle introduksjonen til prosjektet. Du kan også lese mer om databasen her.

© Videnskab.dk. Oversatt av Lars Nygaard for forskning.no.

Slik virker GPS

Tenk deg at du kunne sende deg selv og en smarttelefon tilbake til det pastellfargede åttitallet, til hockeysveisens tiår, da A-ha skinte som soler på TV.

Folk ville gapt av forundring over den lille rakkeren du dro opp av lomma. Så ville de skult beskjemmet ned på sine kilotunge monstre i bærebager.

Opprømt av suksessen og vel vitende om at du surfet på åttitallets stigende joggebølge ville du toppe deg selv ved å vise hvordan treningsappen plotter inn løpetidene.

Men det ville blitt en nedtur. Ditt alter ego på GPS-kartet – den lille røde blippen – ville aldri dukket opp.

Hva ville vært feil? En liten detalj hadde manglet – nærmere bestemt en sverm av satellitter over deg og din svinnende skare av beundrere.

Radio fra rommet

I dag hjelper over tretti GPS-satellitter oss å holde rede på hvor vi er, fra sine baner høyt over hodene våre.

Men hvordan virker GPS-systemet? Den forklaringen går dessverre også over hodet på de fleste av oss. Her er en forklaring som selv jeg kan forstå – og sikkert også du.

GPS-satellitten er egentlig en radiosender. Radiobølger ligner lysbølger, bare at radiobølgene er mye lengre. De går også med lysets hastighet – 300 000 kilometer i sekundet.

Tid er avstand

Radiosenderen på GPS-satellitten sender ut et signal. La oss si at klokka er ti. Signalet sier: «Nå er klokka ti, og jeg er akkurat HER.»

Så tar du imot dette signalet med GPS-mottakeren. Da er klokka di ett tolvdels sekund over ti. Aha – radiosignalet har brukt ett tolvdels sekund fra satellitten til deg.

Radiosignaler går med lysets fart, 300 000 kilometer i sekundet. En tolvdel av dette blir 25 000 kilometer. Det er avstanden mellom deg og satellitten.

Ikke nok med en

Men hva slags nytte har du av å vite at den stakkars satellitten svirrer rundt et bestemt sted der oppe, 25 000 kilometer unna deg? Det forteller deg ingenting om hvor du er.

Tenk deg at du ser det fra satellittens synsvinkel. Alle de stedene der du kan være, er som en diger kule med satellitten i sentrum og deg på kuleflaten, 25 000 kilometer unna. Det er til liten hjelp.

Konstruktørene av GPS-systemet hadde heldigvis sine lyse øyeblikk. De innså, med et resignert men tappert sukk, at det ikke holdt å sende opp en enslig GPS-satellitt. De måtte ha to.

Ikke nok med to

Hver satellitt har sin mulighetskule for hvor i all verden du kan være. Med to satellitter får du to mulighetskuler. Du må være på begge kulene.

Det skjer bare der kulene skjærer hverandre. De skjærer hverandre i en sirkel.

Aha – nå vet vi hvor du er. Du er på denne sirkelen et sted. Men sirkelen er mange tusen kilometer stor. Fornøyd? Nei.

Tilbake til tegnebrettet, kjære GPS-konstruktører. Eller kanskje heller til oppskytningsrampen.

Bergen eller stratosfæren?

Med tre GPS-satellitter og tre kuleflater begynner det nemlig å hjelpe. For hvor er det de tre flatene skjærer hverandre? Bare i to punkter.

Hva? Du kan da ikke være to steder på en gang? Nei, men her kan GPS-mottakeren din bruke litt sunn fornuft.

La oss si at det ene punktet ligger i Bergen, mens det andre punktet befinner seg et sted oppe i stratosfæren eller 13 kilometer nede i lavaen under Stillehavsryggen.

Hvor er det mest sannsynlig at du oppholder deg? Hvis du nøler med svaret, er du i alle fall ikke bergenser.

Ikke nok med tre

Vel – så vet vi nok til å kunne sette den lille røde blippen på GPS-kartet. Det er bare en hake.

Hvis du skal måle avstandene nøyaktig nok, må du måle tida veldig nøyaktig. Klokka på GPS-mobilen din må følge klokka på satellitten helt nøyaktig.

Nå vet jeg at din mobil er helt uovertruffent god og langt bedre enn min, uansett hvilket merke vi snakker om, men – beklager. Klokka holder ikke mål.

Tilbake til oppskytningsrampen. Enda en satellitt freser til værs. Hvordan kan den fjerde satellitten redde dagen – og tidtakinga?

Krympede kuler

Det er litt vanskeligere å forstå. Her er et skudd i mørket. Håper det treffer blink!

Den fjerde satellitten har også sin mulighetskule. Hvis klokka på din superdupermobil gikk helt perfekt, ville denne fjerde kuleflaten treffe ett av de to punktene.

Det ville bli helt klart at du ikke befant deg i stratosfæren eller lavasuppa, men i Bergen.

Men siden klokka ikke går helt likt med satellittklokkene, er alle de fire kulene målt litt feil. Hvis klokka di ligger litt bak riktig GPS-tid, har du målt litt for korte tider fra satellittene til deg. Alle avstandene blir litt for små. Kulene har blitt litt for små.

Kuler som bommer

Hvis klokka di ligger litt foran riktig GPS-tid, har du målt litt for lang tid. Alle avstandene har blitt litt for store. Kulene har blitt litt for store.

Uansett om klokka di går foran eller bak riktig GPS-tid – den fjerde kuleflaten treffer ikke ett av de to skjæringspunktene akkurat. Det er en liten avstand mellom kuleflata og det nærmeste skjæringspunktet.

Denne lille animasjonen forklarer hvordan den fjerde satellitten hjelper til med å stille klokka riktig på GPS-mottakeren i mobilen. (Animasjon: Arnfinn Christensen, forskning.no)

Kuler som treffer

Nå må vi prøve oss fram. Vi justerer klokka på mobilen din litt bakover. Da vil alle kuleflatene krympe litt.

Hvordan går det nå? Begynner den fjerde kuleflata å nærme seg det nærmeste av de to punktene? Nei, den glir bare lenger og lenger unna. Feil retning. Vi snur.

Nå justerer vi klokka på mobilen din litt framover. Da vil alle kuleflatene vokse litt.

Nå går det bedre. Den fjerde kuleflata begynner å nærme seg ett av punktene. Hurra – vi er på rett vei!

Vi fortsetter å justere klokka til den fjerde kuleflaten akkurat treffer ett av punktene. Hurra! Klokka viser riktig GPS-tid, og du er i Bergen!

Feil si’e ta jorda

Fire satellitter er altså nok til at GPS virker. Betyr det at alle de flittige folkene i GPS-satellittfabrikken kan settes på porten? Nei.

Satellitter har nemlig en stygg uvane. De går rundt jorda. Og de skjems ikke for å forsvinne rundt på baksiden av kloden. Baksiden, det er jo selvfølgelig alltid den siden hvor du ikke er.

Altså mister du kontakten med en eller flere satellitter. Du trenger flere. Du trenger så mange at du alltid har fri sikt til minst fire – helst enda fler, for de har det med å gjemme seg bak fjell og bygninger.

Kollisjonssikre

Derfor svirrer hele 31 GPS-satellitter rundt jorda 20 200 kilometer over bakken. Kollisjonsfaren er med andre ord overhengende.

Nei, det er den faktisk ikke. GPS-satellittene er fordelt på seks ulike baner. Alt er gjort for at de aldri skal havne på samme sted til samme tid. Det hadde vært særs lite nyttig.

Det perfekte sammentreffet hadde riktignok blitt et spektakulært fyrverkeri, men selv om blikkboksene hadde sneiet hverandre med en hårsbredd og katastrofen ble unngått, er to GPS-satellitter som står nær hverandre til liten nytte. Hvorfor?

Det viktige poenget er at satellittene er på forskjellige steder. Tenk på alle de overlappende kulene!

Men hva om vi går til ekstremer og setter alle satellittene oppå hverandre? Da oppfører de seg som en satellitt. Null effekt av flere. Hvis satellittene er nær hverandre, går det nesten like ille. Nøyaktigheten lider.

Derfor er det best for satellittene å lystre sersjantens iltre brøl: Spredning så i terrenget!

Ground control to major TomTom

Og GPS har faktisk militære aner. Systemet ble opprinnelig laget for at fartøyer skulle vite hvor de var, og for at raketter skulle finne veien til målet. Fortsatt bruker amerikanske soldater GPS i høyteknologisk krigføring.

Det er fortsatt det amerikanske luftvåpenet som følger satellittene i deres baner fra stasjoner rundt om på kloden.

Hvert annen time – noen ganger oftere – sender de radiosignaler opp til satellittene som forteller dem akkurat hvor de er og hva klokka er – ned til nesten et nanosekund.

Solstormer

Tross all denne nøyaktigheten – feil forekommer. GPS-satellittene lyder Murphys lov: Hvis det er noe som ikke kan gå galt, så går det likevel galt.

Og det som går galt, er klokka. Hvis tidssignalet er ett milliondels sekund feil, betyr det 300 meter feil på bakken. Hvorfor blir tidssignalet feil?

Noen ganger har sola skylda. Stormer av hete gasser fra vår personlige stjerne virvler ned mot jorda og lager nordlys og skyer av elektroner som forstyrrer eller avbøyer og forsinker tidssignalene.

Slike forstyrrelser i atmosfæren kan kartlegges, men er foreløpig vanskelig å varsle. Norske forskere arbeider for å lage et slikt værvarsel for solstormer.

Rødmende satellitt

Andre ganger går klokka på satellitten feil. Eller satellitten tar feil av hvor den er.

Hvis en satellitt er helt ute å kjøre, kan det amerikanske luftvåpenet gi den status som rød. De tar den ut av det gode selskap helt til den har lært å oppføre seg igjen.

Hvordan kunne du, Albert?

Einstein må også ta sin del av skylda for feilene. Relativitetsteorien sier at både farten til satellittene og tyngdekraften fra jorda påvirker klokkene.

De går ørlite feil – rundt 38 milliondels sekund per dag. Det tilsvarer 10 kilometers feil i avstandsmålingen til satellitten.

Dette vet GPS-klokkemakerne. De har derfor satt opp farten på klokkene aldri så lite. Istedenfor å gå med en telletakt på 10,23 millioner svingninger i sekundet er telletakten 10,22999999543 svingninger i sekundet. Her er guttene som kan holde takten.

Clintons første maitale

Før i tida la GPS-folkene faktisk inn en liten feil i tida bare for å være ekle. Nei, kanskje ikke akkurat ekle, men i alle fall for at vi sivilister ikke skulle få like nøyaktig posisjon som folka i felten.

Under Gulfkrigen i 1990-91 laget det problemer. Det var mangel på militære GPS-mottakere, og soldatene måtte bruke sivilistversjonen. Feilen ble kritisk på slagmarken, og militæret slo den av.

Første mai år 2000 bidro president Clinton til arbeidernes kampdag på sin spesielle måte: I en tale forkynte han militær GPS-presisjon til folket – permanent.

GPS-jammer

Men fienden kan også lage trøbbel. Vi med grått hår over ørene husker støysenderen i Kiev, som overdøvet kapitalistiske gladmeldinger og dekadent vestlig rock’n roll.

Den moderne varianten er GPS-jammere. De sender ut falske satellittsignaler og forvirrer GPS-mottakerne.

USAs regjering tror at slike jammere ble brukt både under Irak-krigen og i Afghanistan. Senest i konflikten i Ukraina kan slike jammere ha vært brukt.

Fienden kan også være noe så uskyldig som feil på TV-antenneforsterkere eller annen hverdagselektronikk. Da kan de lage radiostøy. Radiostøy er ikke GPS-gøy.

Multikult i rommet

GPS-satellittene får svingt seg med stadig flere likesinnede fra andre deler av verden.

Russerne har lenge hatt sitt GLONASS. Europa bygger sitt Galileo. Kineserne utvider sitt BeiDou til Global navigation system. Inderne krydrer det hele med GAGAN, som vil gjøre GPS og GLONASS mer nøyaktig.

Og nøyaktigheten kjenner ingen grenser, bokstavelig talt. USA, Europa og Japan har nye støttesystemer som snurper nøyaktighetsnettet enda tettere. Hvordan virker de?

Her er oppskriften: Sett ut GPS-mottakere på bakken. Disse punktene kjenner du posisjonen til veldig nøyaktig. De er en slags fasit.

Mål posisjonen med disse GPS-mottakerne. Stemmer de med fasit? Hvis ikke, mål avviket. Send avviket ut til deg og meg og alle andre brukere via en egen satellitt. Så kan vi – eller rettere sagt GPS-mottakerne våre – justere for feilen.

Amerikanernes støttesystem heter Wide Area Augmentation System (WAAS).  Europa har sitt Geostationary Navigation Overlay Service (EGNOS). Japan har bygget Multi-Functional Satellite Aigmentation System (MSAS).

Men alle følger de slagordet til de tre musketerene: En for alle, alle for en. Har du en mottaker som virker på ett system, så virker det på alle.

Dermed kan for eksempel et europeisk fly med EGNOS-utstyr bruke WAAS i USA for presisjonslandinger.

Åpen slutt

Målet er å få satellittnavigasjon så pålitelig og presis som overhodet mulig. Så skuffende det enn kan høres ut, er ikke alle disse blikkboksene sendt opp for å holde styr på joggerundene dine. De har viktigere oppdrag.

Fly skal kunne lande i den tetteste tåkesuppa med centimeters presisjon. Kravene er ikke stort lavere når megatonnasje med brennbart i buken skal buksere mot boreplattformer.

GPS var begynnelsen. Slutten ser vi knapt. Nå vet du mye mer om hvordan det virker. Hva det kan brukes til, har vi bare så vidt begynt å finne ut av. Men vi har i alle fall kommet langt siden 1980-tallet.

 

Bakterier fra havet inn i kampen mot kreft og infeksjoner

I mange tiår har bakterier tjent samfunnet ved å produsere antibiotika – kjemiske forbindelser som kurerer infeksjonssykdommer.

Men mange mikroorganismer i naturen bærer kanskje oppskriften på framtidas medisiner med seg i sitt genmateriale, uten å ha «skrudd på» denne delen av arveanleggene.

Nå er bioteknologer ved Sintef og NTNU i gang med å utvikle teknologi som skal gjøre det lettere å finne og utnytte disse skjulte og ubrukte medisinfabrikkene i bakterier fra naturlige miljøer. Jakten vil bli konsentrert om bakterier fra havet.

– Målet vårt er å finne nye produserbare stoffer som kan drepe for eksempel kreftceller eller antibiotikaresistente bakterier. Teknologien vi utvikler, vil korte ned letetiden og effektivisere produksjonen av slike stoffer, sier seniorforsker Alexander Wentzel i Sintef.

Ubrukt arvemateriale i fokus

Mikroorganismer er en gruppebetegnelse som omfatter bakterier, sopp og gjær. Bakterier er så små at opptil flere milliarder av dem kan få plass i en milliliter flytende føde.

Da verden oppdaget mikroorganismer som kunne lage infeksjonshemmende stoffer, sto de naturlige egenskapene til organismene i fokus. De utvalgte organismene ble satt til kultivering.

I dyrkingsskålene produserte de isolerbare kjemiske forbindelser som de hadde brukt til å slåss mot andre mikroorganismer i naturens matfat. Dette ble starten på verdens antibiotikaproduksjon.

Men i håp om å utvikle nye kreftmedisiner og antibiotika som virker på resistente bakterier, har forskere og farmasiindustri nå begynt å interessere også seg for det arvestoffet i bakterier som ikke er aktivert når de dyrkes i laboratoriet.

– «Avskrudde» gener hos mikroorganismer kan utnyttes til å lage nyttige stoffer som i dag er helt ukjente. Men til nå har det vært tidkrevende å sirkle inn slikt arvestoff. Forskningsverdenen har vært henvist til å lete i et lite antall gener av gangen. Det er her teknologien vår kan hjelpe, sier Wentzel.

Jakt i mange prøver samtidig

Teknologien vil ifølge Wentzel gjøre det mulig å lete etter nyttige stoffer i et høyt antall prøver samtidig. I tillegg vil den gi en produksjon som er høy nok til at det går an å vurdere stoffenes potensial til å bli framtidige produkter.

Enkelt forklart skal forskerne «klippe ut» arvestoff fra et stort antall ulike mikroorganismer. DNA-et skal deretter overføres til dyrkbare bakterier – organismer med egenskaper som forskerne på forhånd har vært inne og endret. Endringene skal gjøre det mulig for disse organismene å «slå på» produksjon av nye stoffer som ikke kan produseres i den mikroorganismen DNA-et ble hentet fra.

Ved hjelp av systembiologi og syntetisk biologi vil forskerne utvikle slike mikroorganismer. Kulturer av disse vil bli satt til å produsere små testkvanta av alle de mulige produktene – og til å masseprodusere vinnerstoffene.        

Ikke-dyrkbare organismer inn i varmen

All medisin som har sitt utspring i mikroorganismer, har til nå stammet fra organismer som lar seg dyrke.

– Men bortimot 99 prosent av mikroorganismene i naturen lar seg ikke dyrke på laboratoriet. Målet for prosjektet vårt er at vi etter hvert skal kunne utnytte arveanlegg også fra disse organismene i produktjakten vår, sier Wentzel.

Ifølge forskeren er sannsynligheten stor for at det i denne store gruppen av mikroorganismer finnes avskrudde arveanlegg som kan produsere kjemikalier med til nå helt ukjent oppbygning og aktivitet.

– Det er ikke minst derfor at dette prosjektet er så spennende. Kanskje finner vi medisiner som kan bety forskjellen på liv og død for et stort antall framtidige pasienter, sier Wentzel.

Regjeringen vil bruke 100 millioner ekstra på oljeforskning

Om forskning.no

forskning.no er en nettavis med norske og internasjonale forskningsnyheter.

forskning.no gis ut under Redaktørplakaten

Ansvarlig redaktør / daglig leder: 
Nina Kristiansen, tlf 41 45 55 13

Redaksjonssjef Bjørnar Kjensli, tlf 94 24 35 67

Annonser: Mediapilotene 92 44 58 46/91 73 78 10
Stillingsmarked: Preben Forberg, 22 80 98 95

Sveising – et elektrisk fyrverkeri

Om forskning.no

forskning.no er en nettavis med norske og internasjonale forskningsnyheter.

forskning.no gis ut under Redaktørplakaten

Ansvarlig redaktør / daglig leder: 
Nina Kristiansen, tlf 41 45 55 13

Redaksjonssjef Bjørnar Kjensli, tlf 94 24 35 67

Annonser: Mediapilotene 92 44 58 46/91 73 78 10
Stillingsmarked: Preben Forberg, 22 80 98 95