Archive for October 6, 2015

Fremtidens «usynlighetskappe» kan kanskje trylle vekk magen din

Usynlighetskapper hører til i Harry Potter-bøkene, hvor de hjelper Harry, Ron og Hermione med å snike seg ubemerket rundt i gangene.

Men nå har amerikanske forskere funnet opp noe som kan nærme seg, skriver The Guardian.

Foreløpig kan det nye materialet bare skjule mikroskopiske gjenstander, men forskerne mener det utvikles til menneskestørrelse.

– Det er første gang vi har skjult vilkårlige former, forteller professor Xiang Zhang fra University of California til The Guardian. – Hvis du vil skjule mennesker, vil det nå være mulig.

Den nye studien er publisert i tidsskriftet Science, og du kan se en demonstrasjon av hvordan det virker i videoen øverst i artikkelen.

Ølvom blir til sixpack

Nanomaterialet får tredimensjonale former til å se flate ut. Det skjer ved å manipulere lyset. Det oppstår en illusjon om at det underliggende materialet har et helt annet utseende. Og hvis nanomaterialet kan produseres i tilstrekkelig størrelse, vil man i teorien kunne dekke hva som helst med det.

– Du kunne dekke en stridsvogn med det og få den til å ligne en sykkel, forteller Xiang Zhang til LiveScience.

– Du kan forestille deg at hvis noen har en stor mage, som meg, kan du legge dette laget over og få det til å ligne en sixpack, sier han til The Guardian.

Lang vei til usynlighetskappen

Det nye nanomaterialet er bare 50 nanometer tykt. Det består av magnesiumfluorid med et mønster av bitte små, firkantede gullantenner. Til sammenligning er et menneskehår omkring 100 000 nanometer (0,1 millimeter) tykt.

Forskerne dekket objekter som bare var 0,036 millimeter brede i nanomaterialet brukte lys med en bølgelengde på 730 nanometer (nesten infrarødt). På denne bølgelengden kunne nanomaterialet reflektere lyset nesten perfekt og dermed skjule materialet.

Det er et godt stykke fram til å konstruere noe som kan brukes i menneskestørrelse, men det er likevel et stort skritt framover fra tidligere forsøk på å lage «usynlighetskapper», understreker Xiang Zhang.

– Tidligere varianter har vært nokså klønete. Hvis du ville skjule kroppen din, ville du måtte bære rundt på en dings som er tre til fire ganger større, forteller han til The Guardian.

Skeptisk kollega

Det er fortsatt en klar ulempe ved det nye materialet. Foreløpig kan det bare skape usynlighetseffekten hvis det ligger helt stille. Dessuten oppfører lyset seg annerledes på større objekter, forteller en annen forsker.

– De hadde et lite objekt, en liten bulk. Med større objekter blir det annerledes. En del av dem vil ikke være opplyst; de ligger i skyggen, forteller førsteamanuensis Andrea Alù fra University of Texas, Austin til LiveScience. Han forsker selv på systemer som kan gjøre objekter usynlige og er skeptisk overfor den nye forskningen.

Til gjengjeld viser studien at det er mulig å styre hvordan lyset blir reflektert på tynne overflater av mikroskopiske objekter.

– Det vakre ved artikkelen er at du kan kontrollere refleksjonsoverflaten i en størrelsesorden som er mindre enn bølgelengden, forteller Alù.

Kanskje materialet kan brukes til bildeskjermer, siden det kan få enhver overflate til å se helt flat ut, mener Xiang Zhang.

Referanser:

Xingjie Ni, Zi Jing Wong, Michael Mrejen, Yuan Wang og Xiang Zhang: An ultrathin invisibility skin cloak for visible light. Science, 2015. DOI: 10.1126/science.aac9411. Sammendrag.

© Videnskab.dk. Oversatt av Lars Nygaard for forskning.no.

Skyter botox inn i migrenesenter

Det ser ut som en pistol der skjeftet er byttet ut med en lang nål. Ut fra sprøytespissen kommer nervegiften botox, som presses inn i pasientenes migrenesenter. 

Instrumentet er utviklet ved NTNU, basert på en oppfinnelse av legen Daniel Bratbak ved St. Olavs Hospital og brukes nå til å behandle migrenepasienter. 

Men for at kirurgene skal få plassert nålespissen mindre enn én millimeter fra målet, må navigasjonssystemet fortelle dem hvor spissen er til enhver tid – i tillegg til å vise det på en lettfattelig måte. Denne oppgaven har et knippe Sintef-forskere jobbet med siden 2014.

Presisjon er alfa og omega

I laboratoriet demonstrerer forsker Christian Askeland utstyret. «Pistolen» er rettet mot hodet på en dukke på benken. Hjernen er avbildet på en skjerm i bakgrunnen.

– Kirurgen trenger bildeveiledning mens han utfører kirurgi. Det er viktig å treffe og injisere innenfor fem millimeter, og det er en fordel at treffet er mindre enn én millimeter fra målet. Å kunne se ting på skjermen er derfor en forutsetning for å kunne bruke instrumentet, sier han.

I dag benyttes systemet BrainLab for å få opp snittbilder av hodet mens kirurgen jobber. Sintef-forskerne vil erstatte dette med sin egen forskningsplattform som vil være mer effektiv og tilpasset bruker. Det nye systemet har fått navnet CustusX.

– BrainLab kan brukes til alle typer operasjoner, men her snakker vi om en klart definert oppgave. Nemlig å stikke på et punkt, få nåla inn i en bane og så å treffe et bestemt senter. Da kan vi også dra nytte av en mer tilpasset løsning, mener Askeland.

Behov for skjerm og instrument i ett

Oppfinner og lege Daniel Bratbak har sitt daglige virke på Nevrokirurgisk avdeling på St. Olavs hospital, der jobben blant annet er å dempe symptomene til migrenepasienter.

Det som skaper klasehodepinen, eller migrenen, er at det settes i gang impulser i et senter som ligger fem til seks centimeter innenfor huden. Det er i dette senteret at botoxen injiseres. Impulsene reduseres eller fjernes i tre til ni måneder etter inngrepet. Så kommer pasienten tilbake for ny injeksjon.

– Pasienten ligger foran meg, og som kirurg må jeg være helt konsentrert om hvor jeg skal gå inn med sprøytespissen. Dersom jeg må flytte blikket opp mot en dataskjerm der bildeveiledningen er, betyr dette et avbrudd og at jeg må reorientere meg igjen, sier Bratbak.

Kirurgen så derfor behov for en liten skjerm som kunne holdes i samme synsfelt og hadde en idé om å montere en iPhone på instrumentet. Med dette mente han at han kunne operere med instrumentet og blikket rettet på ett sted.

Mer effektivt for pasientene

I dag går migrenepasientene inn på Kirurgisk avdeling for å bli behandlet. Med et bedre navigasjonssystem kan pasientene flyttes fra operasjonsrommet til poliklinikken der en nevrolog kan gjøre hele inngrepet. Dette kan effektivisere behandlingen betraktelig.

Christian Askeland arbeider nå med skjermvisualisering som skal forenkle det å plassere nålespissen akkurat der man ønsker.

– I tillegg skal vi visualisere veien mot målet på en bedre måte slik at kirurgen for eksempel ikke ved et uhell treffer på et bein på veien. Vi kjenner systemet godt og skreddersyr nå plattformen til nettopp migreneoperasjoner.

Askeland sier han ikke har bakgrunn for å si at den nye navigasjonen vil bli mer nøyaktig, men ved å samle alt innhold i ett verktøy slik at kirurgen slipper en reorientering, vil systemet utvilsomt bli mer brukervennlig.

–Det hjelper lite med god nøyaktighet i selve systemet om ikke brukeren får utnyttet det, avslutter han.