Archive for December 9, 2015

Måler blodsukkeret med vibrator

Å stikke seg i fingeren mange ganger daglig kan være et nødvendig herk for mange diabetikere. Teknologien har allerede brakt oss små og rimelige instrumenter som måler korttidsblodsukkeret. Men å ta slike små blodprøver flere ganger daglig, til og med resten av livet, er for mange en plagsom konsekvens av sykdommen.

Dessuten har ikke diabetikeren noen kontroll på blodsukkernivået mellom hver måling, med mindre vedkommende får «føling» – altså kjenner på kroppen at noe er i gjære.

Flere har gjort forsøk på å utvikle en sensor som på forskjellige vis måler blodsukkernivået hele tiden. Så langt har ingen lykkes med å komme opp med noe som er tilfredsstillende for klodens rundt 400 millioner diabetikere.

Inspirert av oljeindustrien

En ny oppfinnelse kan endre dette.

Oppfinneren og ingeniøren Olav Ellingsen fra Rogaland har i mange år utviklet og patentert mange ideer og produkter for så vel olje- og gassindustrien som landbruket. Da sønnen fikk diabetes, tenkte han at han kanskje kunne utnytte de beste prinsippene fra strømningsmålingene som er utviklet for olje- og gasstransport.

Nå sitter han på to patenter og en tidlig versjon av en glukoseindikator – en slags mikrovibrator som har fungert etter forventningene i de tidlige testene. Når den er ferdig utviklet, skal den sitte på et diskré og komfortabelt sted på kroppen, for eksempel på overarmen eller bak øret.

Ellingsen forteller at den i prinsippet er en mikrovibrator. – Den fungerer på en veldig spesiell måte, men jeg kan ikke røpe mer nå på grunn av patentprosessen. Det jeg kan si, er at den måler forandringer i fysiologiske verdier i kroppsvæskene som skyldes blodsukkeret.

Glukoseindikatoren vil kommunisere med en bærbar enhet, for eksempel en smarttelefon. Der vil en app registrere og logge blodsukkernivået kontinuerlig, gi alarm om nivået nærmer seg en kritisk grense og gi anbefalt verdi på insulininjisering. I en senere versjon ser Ellingsen for seg at den også skal kunne kommunisere med en insulinpumpe, som enkelte diabetikere i dag har operert inn i kroppen.

Må gjøre elektronikken mindre

– Vi har kjørt noen løfterike tester og fått verifisert at prinsippene er riktige og at teknologien fungerer, sier Ellingsen som har fått støtte fra Forskningsrådet til utviklingsarbeidet.

Nå er gruppen som jobber med dette i ferd med å bygge en stasjonær enhet for å finjustere teknologien. Neste steg blir å lage en bærbar og trådløs sensor og å gjøre elektronikken mindre – nærmere bestemt å miniatyrisere.

Ellingsen har etablert firmaet MecSense AS og skal nå samarbeide med det svenske Mittuniversitetet i Sundsvall, Kungliga Tekniska Høgskolan (KTH) i Stockholm, den danske bedriften Noliac som produserer piezoelektronikk og det svenske elektronikkutviklingsselskapet ShortLink.

– Spesielt Shortlink har vært viktige. De er eksperter på radiokommunikasjon, miniatyrisering og å produsere energieffektiv mikroelektronikk, og de er ansvarlig for å produsere prototypene, sier Ellingsen.

Diabetes og dehydrering

– Primærmarkedet for produktet blir diabetikere. Men det kan også brukes innen sportsmarkedet for å avdekke dehydrering. Det kan også brukes på eldre mennesker for å sjekke om de er utsatt for dehydrering, sier oppfinneren.

Ellingsen har ikke bestemt seg for om de skal produsere dette selv eller lisensiere ut produksjonen til en eller flere av de store produsentene av medisinsk utstyr.

– Skal vi gjøre dette selv, kan det ta tre til fire år. Om vi velger å lisensiere ut, kan utstyret komme på markedet allerede i løpet av 2017, tror han.

I løpet av 2016 skal de ha klar en prototyp, og i løpet av 2017 skal de ha klart å gjennomføre miniatyriseringen, gjennomført de nødvendige kliniske testene og foretatt all nødvendig verifisering av teknologien og produktet.

Kamera som ser rundt hjørner

Fortsatt er kameraet en prototyp, men forskerne håper det kan bli nyttig for å ta en forhåndstitt inn i utrygge omgivelser, for eksempel for redningsmannskaper.

Dette er første gang slik teknologi kan klare å følge objekter i bevegelse, ifølge studien i Nature Photonics.

Laserpuls mot gulvet

Hvordan virker så dette utstyret?  Det starter med en laser. Den sender en ultrakort puls med lys i en smal stråle ned mot gulvet i rommet.

Strålen blir reflektert i alle retninger fra gulvet. Siden pulsen er så kort, sprer lyset seg nærmest som en bølge, en kuleflate av lys i alle retninger fra punktet der den traff gulvet.

Kuleflaten treffer resten av rommet. Den treffer også isopordukken som forskerne fra Heriot-Watt University i Liverpool i Storbritannina har plassert bak hjørnet i rommet.

Lysekko

Men – og dette er et viktig poeng – den treffer de forskjellige veggene, gulvet, taket og dukken til forskjellige tider.

Dette begynner å ligne på noe kjent, nemlig radar og ekkolodd. Vegger, gulv, tak og dukke sender nemlig tilbake refleksjoner, eller det vi kunne kalle et lysekko.

Det er likevel en forskjell fra radar og ekkolodd: Det er ikke synslinje – eller hørselslinje – til ekkoet. Hjørnet stenger.

Superkamera

Her kommer kameraet inn i bildet. Det er et helt spesielt kamera, videreutviklet av forskerne.

Det er ikke et vanlig videokamera, med 25 bilder i sekundet. Bildebrikken er lynrask.  Her fanges bildet 20 milliarder ganger i sekundet.

Kameraet er også ekstremt lysfølsomt. Det kan registrere enkelte lyspartikler – fotoner. Hvordan kan dette hjelpe forskerne å se rundt hjørner?

Lysringer over gulvflaten

Lysekkoene – refleksene – fra det som er bak hjørnet – vegger, gulv, tak og dukke – treffer gulvet foran kameraet til forskjellig tid.

Fortsatt har disse ekkoene form av kuleflater. Kameraet ser dem omtrent som lysringer i vannet som brer seg over gulvet – til forskjellig tid.

Det blir ikke noe veldig skarpt bilde. Å lage et så raskt og lysfølsomt kamera krever noen kompromisser. Bildebrikken er på skarve 32 ganger 32 bildepunkter, eller 0,001 megapiksler.

Likevel er det nok til at et dataprogram kan rekonstruere det som laget lysekkoene bak hjørnet.

Video fra Heriot-Watt University viser virkemåten for kameraet.

Ser bevegelse

Denne teknologien har vært prøvd før. Det spesielle med dette oppsettet, er at rekonstruksjonen går så raskt.

En gang i sekundet kan forskerne få et nytt bilde. Det betyr at utstyret kan fange bevegelser i sanntid.

Faktisk er det sånn, skriver forskerne i studien, at det er en fordel at objektet beveger seg. Da er det lettere å skille det fra den stillestående bakgrunnen.

Gjort i mørke

Men hva med sterkt lys i rommet? Vil ikke det blende ut de svake refleksene fra laserpulsen?

Forsøkene ble gjort i mørke, skriver en av forskerne, Genevieve Gariepy, i en e-post til forskning.no.

Gariepy har likevel en løsning på dette problemet. Den gjør nytte av at laserlys er helt spesielt – det har bare en bestemt bølgelengde, eller farge.

Filter mot strølys

Laserbølgen som Gariepy og kollegene hans brukte, har en bølgelengde på 800 nanometer. Det tilsvarer rødt lys.

Hvis du plasserer et filter foran kameraet som bare slipper gjennom denne ene bølgelengden eller fargen, så stenger du ute mesteparten av det vanlige lyset i rommet.

– Vi har begynt å undersøke dette og ser at vi kan tolerere at lysene er på i laboratoriet og fortsatt få et signal som er likt det vi fikk med lysene av, skriver Gariepy.

– Etter hvert som vi arbeider videre på denne teknologien vil vi forsøke å forbedre systemet, slik at det er bærbart og praktisk å bruke utenfor laboratoriet og til og med i dagslys, skriver hun.

Referanse:

Genevieve Gariepy m.fl: Detection and tracking of moving objects hidden from view, Nature Photonics, 7. desember 2015, DOI: 10.1038/nphoton.2015.234, sammendrag.