Archive for February 21, 2017

Er e-sport og dataspill idrett?

Dataspill skaper strid. Mange foreldre forstår ikke kodespråket av forkortelser og verdsetter ikke de golde krigslandskapene der kampene utspiller seg i timevis fra kontorstolen på tenåringsrommet.

Men for de som er på innsiden, er det snakk om viktige kamper som krever mye øvelse og talent.

Faktisk driver tusenvis av nordmenn med e-sport, det vil si at de spiller dataspill på konkurransenivå.

Men kan det virkelig karakteriseres som idrett at man sitter og spiller Counter-Strike eller League of Legends på datamaskinen?

«Jeg kunne godt tenke meg å vite om dataspill oppfyller kravene til å være en idrettsgren?» skriver Marlene til oss.

Det spørsmålet går rett inn i en debatt der profesjonelle dataspillere utfordrer den vanlige oppfatningen av idrett som noe fysisk krevende.

Er idrett fysisk krevende?

For at noe skal betegnes som en idrett, må det være en viss fysisk utfoldelse, mener Ylva Hellsten, som er professor ved Institut for Integreret Fysiologi ved Københavns Universitet.

– Du må gjøre ett eller annet fysisk. Du skal gjøre noe eller yte noe som person. Det er den ene delen. Den andre delen er at det er en konkurransesituasjon. Ofte er det også noen regler og rammer du må holde deg innenfor, sier hun.

Likevel er det vanskelig å gi en presis grense for hvor mye man skal bevege kroppen før noe kan kalles idrett.

– Det trenger ikke være en voldsom prestasjon. E-sport har noen av de samme kravene som ballspill, der du må kunne reagere raskt og være flink til å koordinere og se spillet, forklarer Hellsten.

Mange tenker på dataspillere som overvektige, kvisete fyrer som sitter i foreldrenes kjellere og drikker cola.

Mathias Clasen, forsker på Kommunikasjon og Kultur, Aarhus Universitet.

– Idrett er konkurranse og faste rammer

Omkring 9,7 millioner mennesker verden over ser e-sport via videotjenesten Twitch. Gjennom livestreaming følger de favorittspillerne sine i sine seire og nederlag.

Et kort besøk på hjemmesiden gir inntrykk av en ekstremt konkurransepreget kultur, der folk snakker med store ord.

Nettopp konkurranse er det tydeligste kjennetegnet på idrett, mener Verner Møller, som er professor ved Institut for Folkesundhed – Idrett ved Aarhus Universitet i Danmark. Han forklarer at idrett er karakterisert ved følgende fire elementer:

  • Det utspiller seg som en konkurranse som tas alvorlig, selv om det ikke tjener et alvorlig formål (som for eksempel krig).
  • Målet er å vinne og komme høyere opp i hierarkiet. Det betyr noe om man rykker opp eller ned. Ellers ville det bare være mosjon.
  • Aktiviteten skal være organisert og fungere i en institusjonalisert ramme, der resultatene skrives ned og tillegges betydning.
  • Idrett er styrt av et regelsett som ofte forvaltes av en upartisk dommer.

– Jeg mener at e-sport oppfyller kravene til å være en idrett, sier han. Det er Ylva Hellsten enig i:

– Det er helt klart noen sportslige krav i e-sport. Det er ikke alle som kan vinne en kamp på datamaskinen. Derfor mener jeg det en idrett.

Forbundet sier nei

Men Danmarks Idrætsforbund (DIF) er ikke enig. De vil ikke ta inn profesjonelle gamerne, med følgende begrunnelse:

– For å bli opptatt som medlem i DIF, er det nødvendig å drive idrettsaktivitet, og å sitte og taste på noen knapper er etter vår oppfatning ikke det, sa formannen for Dansk Idrætsforbund, Niels Nygaard, i januar til den danske rikskringkasteren DR.

Men nestleder i forbundet, Thomas Bach, mener at foreningen ikke har som oppgave å avgjøre hva som er idrett.

– Det handler mer om at e-sport fortsatt ikke har det medlemsantallet som kreves, og ikke er en samlet forening, sier han.      

Heller ikke i Norge er e-sport en del av idrettsforbundet. Men mange e-sport-utøvere har vist interesse for å bli med, ifølge denne saken i VG.

Men det norske idrettsforbundet har nemlig en formulering om at sportene som kan bli med er «fysisk aktivitet av konkurranse-, trenings- og/eller mosjonskarakter».

Er dart en idrett?

Det gir imidlertid ikke mening å utelukke e-sport hvis man åpner dørene for dart og billiard, mener Verner Møller.

– Det gir ikke mening å ekskludere e-sport hvis de har med dart. Grunnen til at dart er med, er at det er iscenesatt som idrett. Derfor burde e-sport også være med, sier han.

Det er heller ingen fysisk begrunnelse for at dart eller billiard skulle være mer krevende enn profesjonell gaming, mener Ylva Hellsten.

– De fysiske kravene i e-sport er de like store som i dart og billiard. Du kan være i like dårlig form uansett om du spiller billiard, dart eller dataspill. Du skal imidlertid konsentrere deg veldig nøye, sier hun.

Datanerdens dårlige rykte

Selv om hver femte person mellom 18 og 29 år er opptatt av e-sport, er det ikke akseptert som idrett av den eldre generasjonen, mener Mathias Clasen, som forsker på medier ved Institut for Kommunikation og Kultur ved Aarhus Universitet.

– Det er en diskurs rundt dataspill som gjør at det ikke blir tatt alvorlig som en sport, sier han.

Gamere har nemlig et rykte som late – den direkte motsetningen til idrettsutøvere, forklarer Mathias Clasen videre.

– Denne stereotypen hadde kanskje noe på seg for 20 år siden, men ikke i dag. Jeg tror det er den viktigste årsaken til at e-sport ikke er like anerkjent, sier han.

– Hvis profesjonelle gamere skal aksepteres som idrettsutøvere, må vi ta et oppgjør med ideene om at dataspillere er late og overvektige. Noen er kanskje det, men de driver hjernekonkurranse på et veldig høyt plan, avslutter han.          

Referanser:

Digitaliseringen af underholdiningsbranchen – Dansk Erhverv (2016)

© Videnskab.dk. Oversatt av Lars Nygaard for forskning.no.

Forsker på småfeil helt nede på atomnivå

Fysikk er vakkert. Alt fra de største til de minste delene av universet kan beskrives ved hjelp av fysikk. Og alt henger sammen.

Men akkurat som vi mennesker er ufullkomne, så er universets bestanddeler ikke uten sine feil. Og akkurat som hos mennesker, kan nettopp disse feilene være attraktive.

– Materialer er aldri perfekte, konstaterer Dennis Meier, førsteamanuensis ved Institutt for materialteknologi ved NTNU.

Meier studerer småfeil i ellers perfekt ordnede materialer for å forstå deres unike egenskaper. Dette er tilfeldigvis også ekstremt allsidig og potensielt nyttig.

Han er tilknyttet NTNU gjennom Onsager Fellowship-programmet. 

Nyttige feil

Lærebøker viser som regel materialer med perfekte krystallstrukturer. Men dette er bare en del av sannheten. Noen materialer kommer svært nær det perfekte, men det vil alltids finnes feil. Disse feilene kan være urenheter eller «stablefeil» i den atomære eller magnetiske strukturen i et materiale. Meier studerer disse uregelmessighetene og atferden deres på nanonivå.

– Vi kan dra nytte av disse feilene. De har potensial til for eksempel å overføre informasjon i ny teknologi, sier Meier, noe motvillig.

Han vil ikke si at forskningen hans er en nøkkel til superraske datamaskiner som knapt bruker strøm. Men arbeidet hans antyder nyskapende muligheter for framtida.

Elektrisk og magnetisk


MFM-bilde som viser ulike feil i helimagneten GeFe. (Illustrasjon: Creative Commons/Nature Communications)

Materialene han undersøker forener det beste fra to verdener. De har både elektriske og magnetiske egenskaper.

Å studere hvordan disse egenskapene påvirker hverandre kan kanskje en dag hjelpe oss til å utvikle nye typer nanoteknologi. Men uansett hva som skjer med resultatene, vil denne forskningen bringe oss et skritt videre mot større innsikt. For Meier ligger den sanne verdien der.

For å observere materialene har han og kollegene hans brukt flere av de mest avanserte bildeteknikkene, som scanning probe mikroskopi (SPM) og ulike elektronmikroskopimetoder. Men de bruker også andre teknikker.

Meier har utviklet nye optikk-baserte bildemetoder, og har vært involvert i å kontrollere elektriske og magnetiske egenskaper i multifunksjonelle materialer ved hjelp av en laser. Noen av disse metodene var umulige å bruke inntil for få år siden.

Introduserte urenheter

En fremgangsmåte for å undersøke og gjøre bruk av feil på nanonivå er å tilføre enda flere urenheter med vilje. 

Noen av de mest interessante observasjonene som Meier har gjort er i overgangene mellom perfekt ordnede deler av materialet. Disse grenseområdene kan ha helt andre fysiske egenskaper enn det omkringliggende materialet.

I en av studiene introduserte Meier kalsium til erbiummanganat (ErMnO3). Evnen til å lede elektrisitet i visse grenseområder i ErMnO3, såkalte domenevegger, øker dramatisk ved tilsetning av bare små mengder kalsium, kanskje bare en eller to prosent. Ledningsevnen økte mer dess større mengde urenheter de tilsatte materialet.

Men hvor stor mengde urenheter kan du introdusere?

– Kanskje 10-15 prosent? sier Meier, men dette må undersøkes videre.

Antiferromagnetisme

Sist sommer bidro Meier til tre artikler i Nature-tidsskrifter.

I den siste artikkelen så forskerne på ørsmå bevegelser i magnetiske defekter i jerngermanium (FeGe). Gjennom disse bevegelsene organiserer materialet sin magnetiske struktur på atomært nivå.

Få av oss uten fysikkbakgrunn forstår hva dette betyr. Her er en forklaring:

FeGe er et såkalt «heli-magnetisk» materiale. Helimagnetisme er resultat av et samspill mellom ferromagnetisme, som er den form for magnetisme de fleste kjenner til, og krefter som prøver å snu om på den magnetiske ordenen.

Som en konsekvens av disse motstridende kreftene oppstår en spirallignende magnetisk orden. Samlet sett nulles de magnetiske egenskapene ut, og derfor refererer vi til denne typen magnetisk orden som antiferromagnetisme. Antiferromagnetiske materialer er altså på sett og vis magnetiske, men likevel ikke. (Se faktaboks.)

Magnetisme er avhengig av elektronspinn. Du kan tenke på spinn som om elektronene i et materiale roterer rundt seg selv. De kan spinne i forskjellige retninger. I magnetiske materialer spinner elektronene stort sett i samme retning.

Som Doctor Who sier det i episoden The Impossible Astronaut: «Det er ikke sånn i det hele tatt, men hvis det hjelper»…

I antiferromagnetiske materialer arrangeres altså elektronenes spinn vanligvis i et mønster som gjør at de magnetiske egenskapene nulles ut. (Se illustrasjon.) Dette er et veldig generelt fenomen som forekommer i mange materialer. Ettersom den samlede effekten er null, er det svært vanskelig å få tilgang til de relaterte egenskapene.

Mange forskere prøver å påvirke spinn i ferromagnetiske materialer ved hjelp av lys. Meier og hans kolleger klarte å gjøre det i en antiferromagnet. De kunne skrive og slette spesielle deler av materialet ved å bruke lyspulser av forskjellig farge.

Det er her det nyttige trenger seg på som en litt irriterende gjest som nekter å gå.

Av og på

Dataoverføring og lagring består til sist av et komplisert system av 0 og 1, eller «av» og «på» om du vil. Hullkort ble brukt for mange år siden. I dag bruker vi magnetisme til å gjøre den samme jobben. Vanligvis er magnetisk moment «av» eller «på». Kontrollen av dette krever store mengder energi.

Hvis vi isteden kan kontrollere elektronenes spinn ved å bruke elektrisk spenning eller andre typer magnetisme, som antiferromagnetisme, kan dette gi andre former for kontroll eller andre typer «av» eller «på». Det kan da lede frem til datamaskiner som knapt bruker noe strøm. Kanskje.

Dette er ikke noe som Meier snakker for mye om. Forskere innenfor hans felt er interessert i teknologiske anvendelser og å skape neste-generasjons enheter, men arbeidet innebærer også grunnleggende forskning. Det betyr at vi nok må vente en stund før vi kan kjøpe denne typen teknologi i en databutikk.

Referanser:

A. Dussaux m.fl:Local Dynamics of Topological magnetic DEFECTS in the itinerant heli magnet FeGe, Nature Communications, 2016

S Manz m.fl: Reversible optical switching of antiferromagnetism in TbMnO3, Nature Photonics, 2016. doi: 10.10.1038 / nphoton.2016.146

M. Fiebig m.fl: The evolution of multiferroicsNature Reviews Review Materials, 2016

Stamcellebehandling virket for halvparten av MS-pasientene

Multippel sklerose (MS) er en autoimmun sykdom som gjør at immunsystemet angriper nervecellene i hjernen og ryggmargen. Sykdommen har en rekke ulike symptomer, som nedsatt syn, lammelser og utmattelse. Helsetilstanden for de fleste blir verre med tida.

MS er uhelbredelig, men i de senere åra har det kommet mange nye medisiner som kan bremse utviklingen. Dessverre virker ikke behandlingen for alle. Siste håp i rekken har vært såkalt stamcellebehandling (HSCT).

Denne behandlingen går ut på å hente ut stamceller av kroppen til pasienten, for så å bruke cellegift til å ta knekken på immunforsvaret. Etterpå blir stamcellene satt inn igjen, og kan utvikle seg til et nytt, friskere immunsystem.

Slik stamcellebehandling tilbys i dag bare til noen veldig få pasienter i Norge. Det er fordi terapien kan være farlig, og fordi det foreløpig er gjort ganske lite forskning på den. Vi vet ikke så mye sikkert om effekten – særlig på lang sikt – og terapien anses fortsatt som eksperimentell.

Nå kommer imidlertid en ny stein til muren av kunnskap vi trenger for å vurdere behandlinga:

Resultatene fra en langtidsstudie av 281 MS-pasienter som fikk stamcellebehandling mellom 1995 og 2006.

Stoppet hos halvparten

Det er forskeren Paolo Muraro og kollegaer fra en rekke land som står bak den nye studien. Den viser at sykdommen så ut til å stoppe for 46 prosent av pasientene. Fem år etter behandlingen var de altså ikke blitt verre.

Undersøkelsen peker dessuten mot at flere faktorer påvirket sjansene for et godt resultat: Pasientene som klarte seg best var unge og hadde mindre funksjonshemming i utgangspunktet. De hadde bare prøvd et par andre typer behandling før, og hadde såkalt attakkvis MS.

Dette er en variant av sykdommen som gjør at pasienten får anfall av symptomer, som så bedrer seg igjen. Opptil 85 prosent har denne typen MS først. Den kan imidlertid utvikle seg til progressiv MS, hvor symptomene gradvis forverrer seg uten anfall.

– Resultatene støtter behovet for at det gjennomføres en randomisert studie av stammecellebehandling – HSCT – ved attakkpreget MS sammenlignet med sterkeste registrerte behandling, kommenterer professor Lars Bø, senterleder for Nasjonal kompetansetjeneste for multippel sklerose i Bergen.

Senteret har søkt om ressurser til å gjøre en slik undersøkelse, i samarbeid med behandlingssentre i Nederland, Sverige og Danmark.

Kanskje for noen med progressiv MS

To amerikanske MS-eksperter, Michael K. Racke og Jaime Imitolai, kommenterer også studien til Muraro.

– Resultatene antyder at stamcellebehandling kan være et fornuftig valg for yngre pasienter med aggressiv attakkvis MS som har fått en eller to mislykkede behandlingstyper før, skriver de JAMA, samme tidsskrift som studien er publisert i.  

Men Racke og Imitolai antyder også at noen pasienter med progressiv MS kan få stamcellebehandling.

Tidligere resultater har ikke vist så lovende resultater av stamcellebehandling for denne gruppa.

Men den nye studien reiser spørsmålet om behandlingen faktisk kan ha en effekt for noen med progressiv MS også, skriver forskerne.

Det er likevel viktig å huske at undersøkelsen har sine svakheter. For eksempel har den ingen kontrollgruppe. Dermed kan vi ikke sammenligne helsa til pasientene som fikk stamcellebehandling med pasienter som ikke fikk det.

Generelt sett vil man ikke forvente at sykdommen til pasienter med aggressiv MS vil stoppe opp, men det er umulig å si akkurat hvor stor effekt terapien hadde i forhold til annen behandling.

Det kan vi bare få skikkelig svar på ved å gjøre studier som sammenligner stamcelleterapi med dagens behandling.

Referanse:

Paolo A. Muraro, m.fl., Long-term Outcomes After Autologous Hematopoietic Stem Cell Transplantation for Multiple Sclerosis, Jama Neurology, februar 2017. Sammendrag.